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(i) job size which is no greater than batch size B 
and (ii) job processing time. There are two 
important decisions should be made on BM 
problems: (i) grouping jobs into batches; (ii) 
scheduling the established batches to satisfy an 
objective measure. Examples of BP 
manufacturing system occur in semiconductor 
industries, steel foundry and chemical processes, 
electronics manufacturing, environmental stress - 
screening chambers, wafer fabrication, food, 
mineral, pharmaceutical and construction 
industries, etc. In the sequel, we discuss the 
literature on parallel BMs related to the current 
work. Chang et al. (2004) designed a simulated 
annealing algorithm to reach the best value of 
system makespan on parallel BMs. An 
enumerative function of both problem size and 
the least number of required batches was devised 
for such a problem by Husseinzadeh Kashan et 
al. (2008). Then, a hybrid genetic heuristic was 
suggested minimizing maximum completion 
time. In addition, a bi-objective problem was 
considered by Yazdani Sabouni et al. (2008) in 
order to find the best amount of total completion 
time and maximum lateness measures. Moreover, 
a constructive heuristic algorithm presented by 
Damodaran and Velez-Gallego (2009) to 
optimize the makespan and a Greedy 
Randomized Adaptive Search Procedure 
(GRASP) approach were designed in another 
research by Damodaran et al. (2009).  
Motivated by a scheduling problem in semi-
conductor wafer fabrication, Mönch et al. (2005) 
discussed two different approaches for 
scheduling jobs on parallel batch machines with 
incompatible families and unequal readiness. Liu 
et al. (2009) considered a problem in a burn-in 
operations of the final testing stage of semi-
conductor manufacturing. The strong NP-
hardness of the problem, where the jobs have 
deadlines, was discussed. And, a polynomial time 
approximation scheme was devised with the aim 
of minimizing the maximum lateness. A dynamic 
job arrivals case of problem was presented by 
Malve and Uzsoy (2007), where two versions of 
the Release Date Update heuristic were discussed 
and a genetic algorithm was proposed 
incorporating heuristics. For the same problem, 
Wang and Chou (2010) constructed a mixed 
integer programming model, a genetic and a 
simulated annealing algorithm to minimize the 
makespan of system. Additionally, Damodaran 
and Vélez-Gallego (2012) proposed a simulated 
annealing algorithm and a lower bound 
procedure. Moreover, we can find research 

findings in literature considering the planning of 
maintenance in manufacturing and production 
plants (Jamshidi and Seyyed Esfahani, 2015; 
Jalali Naini et al., 2009; Riahi and Ansarifard, 
2008; Mokhtari et al., 2012; Mokhtari and 
Dadgar, 2015). As can be seen, all of the above 
pieces of research assumed that BMs are 
continuously available during the entire horizon. 
However, in real-world situations, machines are 
subject to unpredicted environmental and 
technical circumstances; therefore, they may not 
work efficiently and profitably without a 
scheduled preventive maintenance (PM) 
program. In this paper, contrary to previous BMs 
pieces of research, in order to address a real 
scheduling scheme closer to the real situations, a 
realistic variant of parallel BMs scheduling is 
proposed and discussed where scheduling of PM 
operations is also considered in production 
scheduling.  
Since the problem under consideration is NP-hard 
in a strong sense, an Artificial Immune 
Algorithm, as a novel efficient metaheuristic, is 
devised for the problem in the current paper. This 
is due to simplicity, easy implementation, fast 
convergence, and robustness of AIA. Besides, it 
is known that the quality of the solutions obtained 
by a metaheuristic algorithm is strongly affecting 
the different levels of the parameters. 
Consequently, the Taguchi experimental design is 
also employed as a parameter tuning method to 
calibrate the used parameters. Details of the 
problem statement and solution technique will be 
presented in subsequent sections. 
 

2. Notations and Problem definition 
In the following, we first discuss maintenance 
and PM operations, and then present BM 
scheduling considering PM. Due to the previous 
research pieces in literature, there are commonly 
two types of PM, i.e., fixed PM and Non-fixed 
PM, which will be described in the following 
subsections. 

2-1. Fixed PM 
The fixed PM is one for which PM operations are 
planned in advance, i.e., the starting times of 
maintenance operations are fixed beforehand. 
More precisely, in this type of PM, the fixed time 
periods (TFPM) are predefined without considering 
probabilistic models, and maintenance operations 
are performed exactly in these periods. 

2-2. Non-fixed PM 
The Non-fixed PM is one that the schedule of 
preventive maintenance periods are delineated 
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jointly with the schedule of jobs. In other words, 
the starting times of the PM operations are 
flexible. In Non-fixed PM, the time of the PM 
operations is not determined precisely, but the 
time needed to perform PM activities is 
increasing, instead of being fixed. After that, 
machine works continuously for this computed 
period of time, and the PM operation should be 
done. Details of this PM approach will be 
discussed more in the sequel. To compute 
optimal PM periods in Non-fixed PM approach, 
there are various policies in literature. We 
employed two models of the most important 
policies in the current work: (i) computing 
optimal periods based on maximizing the 
machines’ availability (Non-fixed PM.i); (ii) 
computing optimal periods based on keeping a 
minimum reliability threshold for a given 
production period t (Non-fixed PM.ii). In our 
approach, optimal PM periods are determined 
considering probabilistic models and perform 
according to these periods. Due to flexibility of 
the Weibull distribution to determine the time of 
equipment failure with variable failure rates, this 
model is one of the most commonly used models. 
At a Weibull probability distribution, T~W[θ, β] 
with β>1. where β is shape parameter and θ is 
scale parameter. 
(i) Non-fixed PM.i: since the machine is 
unavailable during maintenance period, an 
optimal PM interval has been determined for a 
manufacturing environment by maximizing its 
constraint availability. Let TPMop be the optimal 
interval between two sequential PM operations. 
Since the time to failure follows a Weibull 
probability distribution, T~W[θ, β] with β>1, 
according to Cassady and Kutanoglu (2003), the 
optimal maintenance interval TPMop can be 
obtained as follows: 
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where tr represents the number of time units that 
repair takes and tp denotes the number of time 
units of the PM operations.  As an example, let 
time to failure follow a Weibull distribution with 
θ=290, β=2 together with tr =8h and tp =1h. Then, 
by employing Eq. (1), the optimal PM interval 
TPMop is calculated as 102.53h. 
(ii) Non-fixed PM.ii: in an unreliable 
manufacturing system, failure rate decreases with 
time; hence, it may be affected by failures. The 
Non-fixed PM.ii approach consists of 
implementing a systematic PM after a time TPM to 

ensure a minimum reliability (R0(t)) of the 
system. It is supposed that PM operations will be 
carried out at intervals 0, 1TPM, 2TPM, 3TPM, ..., 
nTPM where components reach the as-good-as-
new condition. If the time to failure follows a 
Weibull probability distribution, T~W[θ,β] with 
β>1 (Ruiz et al. 2007), the time between PMs in 
Non-fixed PM.ii can be calculated by: 
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As an example, let us consider that the time to 
failure of a machine is characterized with 
parameters θ=290 and β=2. The aim is to 
delineate the time between maintenance 
operations in such a way that reliability is 95% 
(R0(t)=0 95%). To this end, by employing Eq. 
(2), we obtain TPM=25.8h.  
In the sequel, before presenting the BM 
scheduling considering PM, we first express 
First-First (FF) heuristic based on Melouk et al. 
(2004) for grouping jobs into batches. 

2-3. First - first heuristic 
The first-first (FF) heuristic is a methodology 
where batches are formed first and then 
sequenced. Using this heuristic, the first job in 
the list is placed in Batch 1. When we intend to 
place job j in a batch, it is placed in the lowest 
indexed batch if the job size does not exceed the 
remaining capacity of the batch (i.e., ݏ௝ ൑ ܵ െ
∑ ௝ܺ௞௕௞∈௃,௞ஷ௝ݏ ). This process repeats itself until 
all jobs are allocated to batches. Besides, the 
sequence of batches is based on the batch 
number, i.e., Batch 1, Batch 2, … , Batch B. It is 
obvious that the maximum possible number of 
batches will be equal to the number of jobs. 

2-4. BM Scheduling considering PM 
As mentioned before, a few works have been 
presented so far in which PM operations are 
incorporated with parallel machine scheduling 
problem. The aim of this section is to give a 
detailed description on the parallel BM 
scheduling problem with PM operations studied 
in this paper. This is classified into four phases as 
follows. 
Phase 1. Determination of PM intervals. As 
mentioned above, in this paper, two types of PM 
are considered: fixed PM and Non-fixed PM, in 
which two approaches are introduced in a Non - 
fixed PM. In this phase, industry environment can 
carry out one of the approaches based on its 
policy, consequently, determine PM intervals. 
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recognizes the antigen (de Castro and Timmis, 
2003). Two basic mechanisms of affinity 
maturation are hypermutation and receptor 
editing (de Castro and Von Zuben, 2002c). 
Hypermutation is in a similar way with mutation 
in genetic algorithms. It ensures large mutations 
for low-affinity cells in order to obtain cells 
with a higher affinity. Its procedure is handled 
by receptor editing. The natural IA is a very 
complex system with several mechanisms to 
defend against pathogenic organisms. However, 
the natural immune system is also a source of 
inspiration for solving optimization problems. 

3-2. Antibody representation and initialization 
In this section, we use string of discrete number 
representation as applied in the proposed genetic 
algorithm. For the problem with n customer 
jobs, the representation is a permutation of n 
digits in length, in which all digits are between 1 
and n. 

3-3. Fitness evaluation 
The higher fitness value (FV) means the better 
antibody. So, we define the following function to 
evaluate the fitness of each antibody by: 

1
Fitness value ( ) = 

Objective  value( )
p

p
 

 

Thus, the lower the objective function is, the 
higher the affinity value becomes. 

3-4. The best selection  
In this section, the best known antibody based on 
affinity is found. 

3-5. Similarity evaluation 
The similarity between each antibody with the 
best known antibody obtained so far is evaluated. 
All the remaining antibodies will be compared 
with the best antibody one by one to count the 
number of different chromosome positions. This 
evaluation is based on the similarity rate (Sr) 

computed by:  = 
k

SR
n
	

where k is the number of digits that are the same 
as those in the best antibody, and n is the length 
of a string number. 
 

3-6. Affinity value (AV) calculation 
The affinity evaluation of antibodies is an 
important index for the AIA during optimization 
process. Since a good candidate antibody may be 
able to multiply and dominate the mating pool 
prematurely and may restrict the search space to 
candidate antibodies, we use the following 
method to prevent good candidate antibody from 

becoming overly dominant. To assist the search, 
the proposed AIA uses fitness value (FV), 
similarity rate (SR), and adjustment rate (AR) to 
compute the affinity value by: 
Affinity value ( ) = (1-   )  ( ( ) )p SR A R FV p 
where AR is a parameter that has influence on the 
impact of SR on the affinity value. The higher AR 
gets, the lower coefficient (i.e., 1-SR×AR) 
becomes. To maintain diversity, each antibody 
that has higher SR is assigned a lower coefficient 
(i.e., 1-SR×AR) multiplied by FV in order to 
decrease FV more than other antibody’s 
reduction.  

3-7. Mating pool expansion 
popsize-1 antibodies from the full population, 
including the best antibody, are selected with 
replacement and according to their fitness. Those 
antibodies, which have higher fitness value, are 
selected more often. 

3-8. Crossover 
We select popsize×pc pairs of parents from the 
mating pool and perform crossover on the parents 
at random. We use some crossover operators 
applied to the proposed GA. 

3-9. Hyper mutation 
We select the remaining antibodies from mating 
pool and mutate the individual bits. Engin and 
Doyen (2004) used a two-phase mutation 
procedure. At first, the selected clones suffer a 
mutation operator. If the objective value of the 
mutated clone is better than that of the original 
clone, then the mutated one is stored in the place 
of the original one. Otherwise, the clone will be 
mutated again with another mutation operator. 
Due to having four mutation operators, as 
described in the proposed GA, there are 12 (i.e., 
4×3) permutations. 

3-10. Receptor editing 
The worst α% of the whole population in the 
antibody population is eliminated and replaced 
with randomly created antibodies. The overall 
procedure is shown in Figure 4. 
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Fig. 4. Overall proposed procedure 

 
4. Experiments and Results 

As mentioned earlier, genetic algorithm (GA) is 
the most common metaheuristic employed to 
solve the batch machines problem in literature. 
Therefore, we employed GA as a benchmark for 
investigating AIA suggested in the current 
research. GAs attempt to mimic the biological 
evolution process for discovering good solutions. 
They are based on a direct analogy to the 
Darwinian natural selection and mutations in 
biological reproduction and belong to a category 
of heuristics known as randomized heuristics that 
employ randomized choice operators in their 
search. Nowadays, GA is considered to be one of 
the typical meta-heuristic approaches for tackling 
both discrete and continuous optimization 
problems. Theoretical analyses suggest that GAs 
can quickly locate high performance regions in 
extremely large and complex search spaces. GAs 
work by generating chromosomes (e.g., numeric 
vectors), representing a possible solution to a 
problem. The individual components (e.g., 
numeric values) within a chromosome are called 
genes. Chromosomes are then evaluated 

according to a fitness (or objective) function. A 
fitness value is assigned to each chromosome 
according to its performance. The more desirable 
the chromosome is, the larger the fitness value 
becomes. A typical iteration of a GA, called 
generation, proceeds as follows. The best 
chromosomes of the current population are 
copied directly to the next generation (i.e., 
reproduction). A selection mechanism chooses 
chromosomes of the current population in such a 
way that the chromosome with the higher fitness 
value has a greater probability of being selected. 
The selected chromosomes mate and generate 
new offspring by “crossover” (i.e., the 
probabilistic exchange of values between 
vectors). After the mating process, each offspring 
might mutate by another mechanism, called 
“mutation” (i.e., the random replacement of 
values in a vector). Mutation provides 
randomness within the chromosomes to increase 
coverage of the search space and help prevent 
premature convergence on a local optimum. The 
GA's search process typically continues until a 
pre-specified fitness value is reached; a set 
amount of computing time passes or until no 
significant improvement occurs in the population 
for a given number of iterations. The key to 
finding a good solution using a GA lies in 
developing a good chromosome representation of 
solutions to the problem. 
Most of the evolutionary algorithms use a 
random procedure to generate an initial set of 
solutions. The initialization of a chromosome 
presented in a string of discrete number is 
performed from randomly generated n digits in 
range [1, n]. 
 

Since the objective is the minimization of the 
total cost, better solutions are those results in a 
lower objective function. The higher fitness value 
means the better chromosome. So, we define the 
following function to calculate each fitness value: 

 FunctionObjective

1
Value Fitness   

 

Using the roulette-wheel selection mechanism, 
the higher fitness value a solution has, the more 
chance it has to be selected. 

4-1. Genetic operators 

4-1-1. Reproduction 
With more probability, better parents can 
generate better offspring. So, it is necessary to 
transfer the best solutions of each generation to 
the next. Therefore, chromosomes with higher 
fitness values are more desirable, so pr% of the 
chromosomes with the greater fitness values is 
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automatically copied to the next generation, in 
which this is called the elite strategy. 

4-1-2. Crossover 
Crossover operates on two chromosomes at a 
time and generates offspring by combining both 
chromosomes features. The main purpose of this 
operator is to generate ‘better’ offspring, i.e., to 
create better sequences after combining the 
parents. As we assign pr of the chromosomes in a 
generation to reproduction, 1–pr remaining 
chromosomes are generated through the 
crossover operator. 
One-point crossover: 
Input: Two chromosomes as parents 
Output: Two feasible chromosomes as offspring 
Step 1: One point is randomly selected to divide 
both selected parents into two separate parts. If n 
is the number of genes in a chromosome, there 
are n–1 crossover points. One of these points is 
selected with the equal probability. The digits on 
the first side of Parents I and II are inherited by 
the Offsprings I and II, respectively. 
Step 2: Transfer digits from the second side of 
Parent I to the second side of Offspring II in a left 
to right order. Similarly, transfer digits from the 
second side of Parent II to the second side of 
Offspring I. 
Step 3: Transfer those digits from the second side 
of Parent I, which cannot be copied to the second 
side of Offspring II, to remaining empty positions 
of the second side of Offspring I. Do similarly for 
remaining empty positions of Offspring II. 
Two-point crossover: 
Input: Two chromosomes as parents 
Output: Two feasible chromosomes as offspring 
Step 1: Two points are randomly selected to 
divide both selected parents into three separate 
parts. The digits on the middle side of Parents I 
and II are inherited by the middle side of 
Offsprings I and II, respectively. 
Step 2: Transfer digits from the first and third 
sides of Parent I to the first and third sides of 
Offspring II in a left to right order. Similarly, 
transfer digits from the first and third sides of 
Parent II to the first and third sides of Offspring I. 
 Step 3: Transfer those digits from the first and 
third sides of Parent I, which cannot be copied to 
the first and third sides of Offspring II, to the 
remaining empty positions of the first and third 
sides of Offspring I. Do similarly for the 
remaining empty positions of Offspring II. 
Position-based crossover: 
Input: Two chromosomes as parents 
Output: Two feasible chromosomes as offspring 

Step 1: A set of the same positions from each 
parent is selected randomly. Each position is 
independently marked with the probability of 0.5. 
Transfer the digits in these positions from Parents 
I and II into the corresponding positions in 
Offsprings I and II, respectively. 
Step 2: Transfer the unmarked digits from Parent 
I to the corresponding positions of Offspring II in 
the left to the right order. The same procedure is 
applied to produce the first offspring by Parent II. 
Step 3: Transfer those unmarked digits from 
Parent I, which cannot be copied to Offspring II, 
to the remaining empty positions of Offspring I. 
Do similarly for the remaining empty positions of 
Offspring II. 

4-1-3. Mutation 
The mutation operator is used to rearrange the 
structure of a chromosome and to slightly change 
the sequence, i.e., generating a new but similar 
sequence. This operator can also be considered as 
a simple form of a local search. The probability of 
mutating an offspring is called the probability of 
mutation, pm, which is usually a small number. 
After generating an offspring by a crossover 
operator, a random number from uniform [0,1] is 
dedicated to the offspring. If this random number 
is less than or equal to pm, then the mutation 
operator will be performed on that offspring. We 
present four mutation operators, namely swap 
mutation, big swap mutation, inversion mutation, 
and displacement mutation. In the swap mutation 
operator, two adjacent genes are swapped. In a big 
swap mutation, two genes are selected and 
swapped. In the inversion mutation, two positions 
are selected, and the sub-string is inverted between 
two positions. In the displacement mutation, a sub-
string is selected and inserted in a position.  

4-2. Data, factors and levels 
Data required for testing effectiveness of our 
algorithms for the parallel BMs with maintenance 
problems includes two parts, data related to the 
production scheduling and data related to the PM. 
The first part of the required data consists of data 
related to the production scheduling. Test problem 
instances of this part are randomly generated in a 
manner similar to Husseinzadeh Kashan et al. 
(2008). For covering various types of problems, 
four factors are identified: number of jobs (n), 
number of BMs (m), variation in job processing 
times (pj), and variation in job sizes (sj). In general, 
six categories of problems are generated by 
combining three levels of job sizes (small, large, 
and combination of small and large (mixed)) and 
two levels of processing times. Processing times 
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and job sizes are generated from discrete uniform 
distribution. The factors, their levels and ranges, 
are shown in Table 1. Also, we consider the 
machine capacity to be 10 in all instances. 
 

Tab. 1. Factors and levels 
Factors levels 

m 2,4 
n 10, 20, 50, 100, 200 
pj Uniform [1,10] and Uniform [1,20] 

sj 
Uniform [1,10], Uniform [2,4], 

Uniform [4,8] 
 
The second part of data consists of shape 
parameter (β), scale parameter (θ), the duration of 
the PM operations (DPM), the number of time 
units the repair takes (tr), and the number of time 
units of the PM (tp). These data are divided into 
two subparts, each of which considers one PM 
policy. For each configuration of n and m, β = {2, 
3, 4} is defined. We assume that the duration of 
PM operations is uniformly distributed in a wide 
range of values. Because we want to consider 
some short maintenance actions, like cleaning, 
tightening of bolts or lubrication, and also some 
longer maintenance actions such as replacements 
of parts or thorough inspections, DPM is defined 
as U[1, 5], U[1, 10], and U[1, 15] for processing 
time generated from the discrete uniform [1,10] 
and  U[1, 10], U[1, 20], and U[1, 30] for 
processing time generated from the discrete 
uniform [1,20]. That is, there are three cases for 
each processing time where the average DPM is 
50%, 100%, or 150% of the processing times. In 
the case of policy II, tp is set at 1 and tr at 8 for all 
the experiments. For setting θ, the levels of θ are 
chosen so as to make sure that a significant 
number of PM operations would be carried out in 
each machine. It is known that a small value for θ 
would result in very little or even no PM 
operations, while a very large value would 
possibly impede performing certain processing of 

jobs on machines without interruptions due to the 
small amount of time between PM operations. 
Also, it is necessary to deal with that if the time 
between two consecutive PM operations is lower 
than the maximum processing time, some jobs 
could be never processed. On the other hand, if 
this time becomes very large, it is very likely no 
PM operations are required. Consequently, the 
levels of θ are chosen so to make sure that a 
significant number of PM operations would be 
carried out in each machine, and generating TPMop 
must be done with the great care. Doing so, we 
need to define two new artificial variables “B” 
and “X” to estimate the workload on the batch 
processing machines as follows: 

ܤ ൌ
∑ ௦ೕ
೙
ೕసభ

଴.଼ൈௌ
 ;        ܺ ൌ

஻

௠
, 

so that “B” is the expected number of batches on 
station consisting of parallel BM and “X” is the 
expected number of batches on each machine. 
Values of θ are set according to the variable “X” 
and number of jobs. Finally, for each 
configuration of n, m, pj, sj, β, θ, and DPM, there 
are 10 different problems, which result in a total 
set of experiments of 5400 instances which each 
experiment runs six times. In Policy III, four 
parameters exist: θ, β, R0(t), and t. The same 
configurations of β, θ, and DPM as in the case of 
policy II are considered; therefore, a set of 5400 
instances is also obtained. On the other hand, the 
aim of policy III is to keep a minimum level of 
reliability for a production period t which TPM is 
calculated by Eq. (2). Here, the aim is a 95% 
reliability after the production period t, thus 
R0(t)=0.95. Thereupon, it is necessary to 
determine period t to be calculated TPM by Eq. 
(2). Parameter t can be easily obtained from the 
job processing times of the instances. Processing 
times are generated from uniform distributions 
between [1, 10] and [1,20], and then, t ≈ X×5 and 
t ≈ X×10, respectively. After calculating B and 
then X, we show values of t in Tables 2 and 3. 

 
Tab. 2. Values of t for m=2 

problems 
t 

݊ = 10 ݊ = 20 ݊ = 50 ݊ = 100 ݊ = 200 
௝ݏ ∈ ሾ2,4ሿ	, ௝݌ ∈ ሾ1,10ሿ 15 24 37 155 160 
௝ݏ ∈ ሾ4,8ሿ	, ௝݌ ∈ ሾ1,10ሿ 16 36 84 167 341 
௝ݏ ∈ ሾ1,10ሿ	, ௝݌ ∈ ሾ1,10ሿ 12 27 77 148 324 
௝ݏ ∈ ሾ2,4ሿ	, ௝݌ ∈ ሾ1,20ሿ 25 30 75 321 373 
௝ݏ ∈ ሾ4,8ሿ	, ௝݌ ∈ ሾ1,20ሿ 33 73 169 335 683 
௝ݏ ∈ ሾ1,10ሿ	, ௝݌ ∈ ሾ1,20ሿ 25 55 155 296 648 
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Tab. 3. Values of t for m=4 

problems 
t 

݊ = 10 ݊ = 20 ݊ = 50 ݊ = 100 ݊ = 200 

௝ݏ ∈ ሾ2,4ሿ	, ௝݌ ∈ ሾ1,10ሿ 13 15 28 80 93 

௝ݏ ∈ ሾ4,8ሿ	, ௝݌ ∈ ሾ1,10ሿ 13 16 42 97 170 

௝ݏ ∈ ሾ1,10ሿ	, ௝݌ ∈ ሾ1,10ሿ 15 27 38 74 162 

௝ݏ ∈ ሾ2,4ሿ	, ௝݌ ∈ ሾ1,20ሿ 13 17 37 160 186 

௝ݏ ∈ ሾ4,8ሿ	, ௝݌ ∈ ሾ1,20ሿ 16 36 84 167 341 

௝ݏ ∈ ሾ1,10ሿ	, ௝݌ ∈ ሾ1,20ሿ 13 27 79 143 324 

 
Each category of problems is represented with a 
run code. For example, a problem category with 
10 jobs, four BMs, processing times generated 
from the discrete uniform [1,20], job sizes 
generated from the discrete uniform [4,8], and 
β=3 is shown by J1m2p2s3β3. To be fair, 
searching time is set to a specific number for both 
algorithms, which is equal to 0.5×n×m 
milliseconds. This criterion is sensitive to both 
problem sizes (i.e., ݊ and ݉). By using this 
stopping criterion, searching time increases 
according to the increase of either a number of 
DCs or customers. Algorithms are coded in C# 
(visual studio 2008) and run on a Pentium IV PC 
with 2.6 GHz and 1GB of RAM memory. With 
these data, the Taguchi experiments are carried 
out for each algorithm. The results are 
individually transformed to S/N	Ratio, then these 
ratios of trials are averaged at each level. 
 

5. Performance Assessment 
In this section, we compare the results of 
algorithms. Because the scale of objective 
functions in each instance is not the same, the 
relative deviation percentage or response variable 
(RPD) is used as a common performance 
measure to compare the algorithms. After 
transforming the results of experiment to RPD 
measure, as illustrated in Tables 4 and 5, they are 
averaged for each combination of n and m (48 
data points per average). This table shows the 
high performance of AIA (RPD=0.0155%) with 
respect to the GA. Figures 11 and 12 demonstrate 
interaction between the quality of the algorithms 
and the size of problems. It is worth noting that 
AIA exhibits the robust performance, meanwhile 
the problems of size increases. It also shows 
remarkable improvement in performance of AIA 
in large-sized problems versus GA. 
 

Tab. 4. Average RPD for the algorithms 
grouped by n and m=2 

Algorithms 

݊ / ݉ =2 GA AIA 

10 0.0286 0.0232 
20 0.0279 0.0223 
50 0.0352 0.017 
100 0.0163 0.0088 
200 0.0266 0.0064 

Average 0.02692 0.01554 
 

 
Tab. 5. Average RPD for the algorithms 

grouped by n and m=4 
Algorithms 

݊ / ݉=4 GA AIA 
10 0.032 0.0212
20 0.0279 0.0213 
50 0.033 0.016 

100 0.0163 0.015 
200 0.0166 0.0054 

Average 0.02516 0.01578 
 

6. Conclusion 
In advanced manufacturing systems, the main 
purpose of preventive maintenance is to ensure 
that all machines required for production are 
operating at high level of operating conditions at 
all times. Therefore, manufacturers should 
consider having an established maintenance 
schedule in place in order to reap the full benefits 
of a preventive maintenance strategy. In this 
paper, both fixed and flexible (Non fixed) 
operations are considered to achieve a plan for 
scheduled preventive maintenance at a 
manufacturing system with parallel machines. 
The fixed PM is considered where PM operations 
are planned in advance and the starting times of 
the maintenance operations are fixed beforehand. 
In this type of PM, the fixed time periods are 
predefined without considering probabilistic 
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models and PM operations are carried out exactly 
in these time periods. On the other hand, the 
schedule of PM periods is determined jointly 
with the schedule of jobs in Non-fixed PM, and 
the starting times of the PM activities are allowed 
to be flexible. In this type, the time of the PM 
activities is not determined precisely, but the 
times needed to perform PM activities times are 
computed based on the failure times of a 
machine. Two solution methodologies, GA and 
AIA, are devised to reach the appropriate 
scheduled maintenance plan due to time 
complexity of the problem. The best performance 
of methods is investigated according to their 
parameters and operations. Then, the 
performance of solution methodologies is 
evaluated via computational experiments. 
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