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In today's real-world manufacturing systems, the importance of an
efficient maintenance schedule program cannot be ignored,
because it plays an important role in the success of manufacturing
facilities. However, most manufacturers suffer from lack of a total
maintenance plan for their crucial manufacturing systems. Hence,
in this paper, we study a maintenance operations planning
optimization on a realistic variant of parallel batch machines
manufacturing system which considers non-identical parallel
processing machines with non-identical job sizes and fixed/flexible
maintenance operations. To reach an appropriate maintenance
schedule, we propose a solution frameworks based on an Artificial
Immune Algorithm (AIA). Then, we introduce a new method to
calculate the affinity value by using an adjustment rate. Finally,
the performance of the proposed methods are investigated.
Computational experiments, for a wide range of test problems, are
carried out in order to evaluate the performance of methods.
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1. Introduction produced. In order to maintain machines and

The true cost of a breakdown is sometimes
difficult to assess for a machine. It is obvious that
this cost is more than the cost of labor and
materials of preventive services. When the
breakdown incurs a stop to production, the cost is
significantly high because no products are being
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equipment in an appropriate operating condition,
manufacturers need to preventively maintain all
their facilities. This paper deals with a problem of
scheduling jobs on non-identical parallel batch
machines with maintenance considerations. A
batch machine (BM) is one that is capable of
simultaneously processing a group of jobs, such
that processing time of all jobs in a batch is the
same. The characteristics of each job is two-fold:
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(i) job size which is no greater than batch size B
and (ii) job processing time. There are two
important decisions should be made on BM
problems: (i) grouping jobs into batches; (ii)
scheduling the established batches to satisfy an
objective  measure.  Examples of BP
manufacturing system occur in semiconductor
industries, steel foundry and chemical processes,
electronics manufacturing, environmental stress -
screening chambers, wafer fabrication, food,
mineral, pharmaceutical and construction
industries, etc. In the sequel, we discuss the
literature on parallel BMs related to the current
work. Chang et al. (2004) designed a simulated
annealing algorithm to reach the best value of
system makespan on parallel BMs. An
enumerative function of both problem size and
the least number of required batches was devised
for such a problem by Husseinzadeh Kashan et
al. (2008). Then, a hybrid genetic heuristic was
suggested minimizing maximum completion
time. In addition, a bi-objective problem was
considered by Yazdani Sabouni et al. (2008) in
order to find the best amount of total completion
time and maximum lateness measures. Moreover,
a constructive heuristic algorithm presented by
Damodaran and Velez-Gallego (2009) to
optimize the makespan and a Greedy
Randomized  Adaptive  Search  Procedure
(GRASP) approach were designed in another
research by Damodaran et al. (2009).

Motivated by a scheduling problem in semi-
conductor wafer fabrication, Monch et al. (2005)
discussed two different approaches for
scheduling jobs on parallel batch machines with
incompatible families and unequal readiness. Liu
et al. (2009) considered a problem in a burn-in
operations of the final testing stage of semi-
conductor manufacturing. The strong NP-
hardness of the problem, where the jobs have
deadlines, was discussed. And, a polynomial time
approximation scheme was devised with the aim
of minimizing the maximum lateness. A dynamic
job arrivals case of problem was presented by
Malve and Uzsoy (2007), where two versions of
the Release Date Update heuristic were discussed
and a genetic algorithm was proposed
incorporating heuristics. For the same problem,
Wang and Chou (2010) constructed a mixed
integer programming model, a genetic and a
simulated annealing algorithm to minimize the
makespan of system. Additionally, Damodaran
and Vélez-Gallego (2012) proposed a simulated
annealing algorithm and a lower bound
procedure. Moreover, we can find research

findings in literature considering the planning of
maintenance in manufacturing and production
plants (Jamshidi and Seyyed Esfahani, 2015;
Jalali Naini et al., 2009; Riahi and Ansarifard,
2008; Mokhtari et al.,, 2012; Mokhtari and
Dadgar, 2015). As can be seen, all of the above
pieces of research assumed that BMs are
continuously available during the entire horizon.
However, in real-world situations, machines are
subject to unpredicted environmental and
technical circumstances; therefore, they may not
work efficiently and profitably without a
scheduled preventive  maintenance (PM)
program. In this paper, contrary to previous BMs
pieces of research, in order to address a real
scheduling scheme closer to the real situations, a
realistic variant of parallel BMs scheduling is
proposed and discussed where scheduling of PM
operations 1is also considered in production
scheduling.

Since the problem under consideration is NP-hard
in a strong sense, an Artificial Immune
Algorithm, as a novel efficient metaheuristic, is
devised for the problem in the current paper. This
is due to simplicity, easy implementation, fast
convergence, and robustness of AIA. Besides, it
is known that the quality of the solutions obtained
by a metaheuristic algorithm is strongly affecting
the different levels of the parameters.
Consequently, the Taguchi experimental design is
also employed as a parameter tuning method to
calibrate the used parameters. Details of the
problem statement and solution technique will be
presented in subsequent sections.

2. Notations and Problem definition

In the following, we first discuss maintenance
and PM operations, and then present BM
scheduling considering PM. Due to the previous
research pieces in literature, there are commonly
two types of PM, i.e., fixed PM and Non-fixed
PM, which will be described in the following
subsections.

2-1. Fixed PM

The fixed PM is one for which PM operations are
planned in advance, i.e., the starting times of
maintenance operations are fixed beforehand.
More precisely, in this type of PM, the fixed time
periods (Trpy) are predefined without considering
probabilistic models, and maintenance operations
are performed exactly in these periods.

2-2. Non-fixed PM
The Non-fixed PM is one that the schedule of
preventive maintenance periods are delineated
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jointly with the schedule of jobs. In other words,
the starting times of the PM operations are
flexible. In Non-fixed PM, the time of the PM
operations is not determined precisely, but the
time needed to perform PM activities is
increasing, instead of being fixed. After that,
machine works continuously for this computed
period of time, and the PM operation should be
done. Details of this PM approach will be
discussed more in the sequel. To compute
optimal PM periods in Non-fixed PM approach,
there are various policies in literature. We
employed two models of the most important
policies in the current work: (i) computing
optimal periods based on maximizing the
machines’ availability (Non-fixed PM.i); (ii)
computing optimal periods based on keeping a
minimum reliability threshold for a given
production period ¢t (Non-fixed PM.ii). In our
approach, optimal PM periods are determined
considering probabilistic models and perform
according to these periods. Due to flexibility of
the Weibull distribution to determine the time of
equipment failure with variable failure rates, this
model is one of the most commonly used models.
At a Weibull probability distribution, 7~W[6, f]
with f>1. where f is shape parameter and @ is
scale parameter.
(i) Non-fixed PM.i: since the machine is
unavailable during maintenance period, an
optimal PM interval has been determined for a
manufacturing environment by maximizing its
constraint availability. Let Tpy,, be the optimal
interval between two sequential PM operations.
Since the time to failure follows a Weibull
probability distribution, 7~W[6, f] with p>1,
according to Cassady and Kutanoglu (2003), the
optimal maintenance interval Tpy,, can be
obtained as follows:

/s

— tl’

TPMapH'|:tr(ﬁ_1):| (1)

where ¢, represents the number of time units that
repair takes and ¢, denotes the number of time
units of the PM operations. As an example, let
time to failure follow a Weibull distribution with
6=290, f=2 together with 7, =8" and L =1". Then,
by employing Eq. (1), the optimal PM interval
Tpuiop is calculated as 102.53".

(i)  Non-fixed PM.ii: in an unreliable
manufacturing system, failure rate decreases with
time; hence, it may be affected by failures. The
Non-fixed PM.ii  approach  consists of
implementing a systematic PM after a time 7py, to

ensure a minimum reliability (Ry(f)) of the
system. It is supposed that PM operations will be
carried out at intervals 0, 17py, 2Try, 3Tpu, ..,
nTpy where components reach the as-good-as-
new condition. If the time to failure follows a
Weibull probability distribution, 7~W[6,5] with
£>1 (Ruiz et al. 2007), the time between PMs in
Non-fixed PM.ii can be calculated by:

InRy (1) /(5D
Tpy = {_ Hﬁ—to } 2
As an example, let us consider that the time to
failure of a machine is characterized with
parameters 6=290 and f=2. The aim is to
delineate the time between maintenance
operations in such a way that reliability is 95%
(Ry(1)=0 95%). To this end, by employing Eq.
(2), we obtain Tpy=25.8"

In the sequel, before presenting the BM
scheduling considering PM, we first express
First-First (FF) heuristic based on Melouk et al.
(2004) for grouping jobs into batches.

2-3. First - first heuristic

The first-first (FF) heuristic is a methodology
where batches are formed first and then
sequenced. Using this heuristic, the first job in
the list is placed in Batch 1. When we intend to
place job j in a batch, it is placed in the lowest
indexed batch if the job size does not exceed the
remaining capacity of the batch (ie., s; <5 —
ke k=j SjXkp)- This process repeats itself until
all jobs are allocated to batches. Besides, the
sequence of batches is based on the batch
number, i.e., Batch 1, Batch 2, ..., Batch B. It is
obvious that the maximum possible number of
batches will be equal to the number of jobs.

2-4. BM Scheduling considering PM

As mentioned before, a few works have been
presented so far in which PM operations are
incorporated with parallel machine scheduling
problem. The aim of this section is to give a
detailed description on the parallel BM
scheduling problem with PM operations studied
in this paper. This is classified into four phases as
follows.

Phase 1. Determination of PM intervals. As
mentioned above, in this paper, two types of PM
are considered: fixed PM and Non-fixed PM, in
which two approaches are introduced in a Non -
fixed PM. In this phase, industry environment can
carry out one of the approaches based on its
policy, consequently, determine PM intervals.
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How to compute PM intervals in fixed PM due to
characteristics kind of BM or other conditions
can be determined simply. Computing PM
intervals in Non-fixed PM.i and Non-fixed PM.ii
has been described in detail in pervious sections.
Phase 2. Forming batches.

Phase 3. Sequencing formed batches on parallel
BM:s.

To perform two phases 2 and 3, we use FF
methodology that is detailed above. These two
phases are presented in the example of Fig.1.
Based on FF, in Batch 3, difference between
processing time of Jj, (as processing time of
Batch 3 e.g. P;) and Js is equal to 4, which is
lower than ¢&. But, since summation size of job Jjo
and Js is 11 and it does exceed B, the difference
between processing time of Jj, and next job in the
list, e.g., Js, is computed, which is lower than .
Moreover, summation size of jobs Jjoand Js is 3
and do not exceed B, hence the need for inserting
Batch 3 after Jjo, Js. Then, since 7 units of batch
sizes are empty, difference between P; and next
job, e.g., J,, in sequence is computed. But, it is
not lower than & here; and hence, can be inserted
in Batch 3. Grouping other jobs in batches is the
same. As mentioned above, FF automatically
sequenced batches based on LPT.

Phase 4. Scheduling (batch processing and
carrying out PMs on BMs). Now, each batch
should be processed on each BM. In this phase,
PM operations are embedded in BM scheduling.
The interruption of batches is not allowed once
processing is started, i.e., the batches are non-
preemptive and resumable. In order to decide on
production sequence, defining a criterion is
necessary to schedule PM operations. Ruiz et al.
(2007) introduced a simple criterion for Non-
fixed PM with good results in many situations.
We employed this criterion for our problem with
some modifications as follows. Whenever there is
overlap between a batch and PM operations, the
PM operation is processed at first, and the
processing of batch is postponed until PM
operation terminates. When a new batch is to be
processed on a BM, the total accumulated
processing time will be computed. Now, if shop
planning is based on fixed PM, then accumulated
processing time will be compared with PM
interval. And, if shop planning is based on Non-
fixed PM, then accumulated processing time will
be compared with Tpy,, or Tpy. In  this
comparison, if the accumulated processing time
is longer than PM interval in Fixed PM, and Tpuqp
in Non-fixed PM.i or Tpy in Non-fixed PM.ii, the
PM operation is processed at first and the process

of the next batch is postponed. Let us consider an
example explained in Figure 1. In this example,
we have four batches with sequence {B1, B2, B3,
B4} which should be processed on two BMs
available. As can be seen, without considering
PM operations, C,,, is calculated as 34.

M1 B1 | B4 |
M2 B2 | B3 |
17 25 29 34=Crmax
Fig. 1. Gantt chart of the solution for the
example

Let us suppose that PM activities are scheduled
based on fixed PM with Tpy,,=40 for machine
M1 and Tpy,=25 for machine M2. The duration
of PM activities is set to be 10 (Dpy,~10) and 8
(Dpp=8) on machines M1 and M2, respectively.
As it is clear from Figure 2, processing of Bl
lasts 25 time units on M1. At this stage, it is not
possible to process B4, because it has processing
time of 9, which would finish at the time of 34
while Tgpy = 30. Therefore, machine M1 would
be left idle for 5 time units, and then PM begins
at moment 30, and lasts for 10 time units. After
performing PM operation, B4 is processed. This
approach is repeated on machine M2 with the
same manner.

M1 B1 ] [ PM [ B2 |

M2 B2 | | PM | B3 |

17 25 3038 40 50 59=Crx

Fig. 2. Gantt chart after applying the fixed PM

Now, consider another case with Tp,,=30 for
machine M1 and Tpu,,=25 for machine M2. The
durations of PM on machines M1 and M2 are
assumed to be 10 and 8, respectively. PM
scheduling is based on Non-fixed PM.i. in this
case. It is also assumed that shop has the same
batches with the same sequence in the current
horizon. After BI, B4 has to be processed
without any wait. It has the processing time of 9,
which would result in an accumulated total
processing time of 34 greater than 7pp,=30.
Hence, PM should be performed at first, and the
process of B4 should be postponed. After
performing the first PM with duration of 10 that
lasts from 25 to 35, the accumulated total
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processing time restarts from zero. Then,
processing of other remaining batches begins. For
machine M2, the same procedure will be done.
Figure 3 depicts Gantt chart of example with
Non-fixed PM.i.

M1 B1 | PM | B2 |
M2 B2 [pPM| B3 |

17 25 35 37 44=Crmex
Fig. 3. Gantt chart after applying the flexible

PM.i

Carrying out PM with Non-fixed PM.ii case
reveals the same results as Non-fixed PM.ii case;
however, Tpyop is first calculated by Eq. (2), and
then the rest of steps should be done according to
their order. In other words, each BM will be
exactly in operation Tpy,, time units if we apply
Non-fixed PM.i (Eq. (1)), or if Non-fixed PM.ii is
applied (Eq. (2)) after Tp), time units in operation.
As we can see, the simplicity of the approach and
simple coding allows for implementing the
scheduling of PM operations with ease.
Therefore, this approach is adaptable and
extendable to any BM scheduling problem. It is
notable that C,,, is 59 in fixed PM, while it is 44
in Non-fixed PM.i.

3. Methodologies

The use of classical optimization techniques is
limited, because there are a large number of
variables and constraints in real-world situations,
and hence complexity of problem is high. In such
cases, metaheuristics are appropriate for solving
alternative. Therefore, in the current paper, an
artificial immune algorithm as a new efficient
metaheuristic, is proposed to solve the presented
model.

3-1. An artificial immune algorithm

The natural immune system is an adaptive pattern
recognition system defending the body from
foreign pathogens like bacteria and viruses. This
system is able to categorize all cells within the
body as either those belonging to its own kind or
those that have a foreign origin (Dasgupta, and
Gonzalez, 2003). Detection is complicated as
pathogens can evolve rapidly, producing
adaptations that avoid the immune system and
allow the pathogens to successfully infect hosts.
The immune system learns to distinguish between
its own cells and malefic external invaders in

order to be protective. This process is known as
discrimination. Vertebrates have an adaptive
immune system and are capable of learning to
recognize and eliminate new antigens. In
biological systems, an immune response is based
on two types of lymphocytes in body, i.e., T-cell
originating in the thymus gland and B-cell
originating in bone marrow (de Castro and
Timmis, 2002a and 2002b). The role of these
receptors on the surface of the lymphocytes is to
recognize and bind the antigen.

Once a B-cell is sufficiently stimulated through
close affinity to a presented antigen, it rapidly
produces clones of itself. At the same time, it
produces mutations at particular sites in its gene
which enable the new cells to match the antigen
more closely. There is a very rapid proliferation of
immune cells, successive generations of which are
better and better matches for the antigens of the
invading pathogen. B-cells which are not
stimulated eventually die because they do not
match any antigen in the body. Biologically,
immune systems generate a set of antibodies to
recognize foreign substances, known as antigens
and, to ecliminate them. The mechanisms are able
to recognize, in which antibodies are better at
eliminating the antigens, and produce more
variations of those antibodies in the next
generation of antibodies. Each antibody is
assigned a value, called affinity, showing the
capability of the antibody to eliminate antigens.
The objective functions and constraints are
represented as antigen inputs, while the solution
process is simulated by antibody production in the
feasible space. The affinity in the artificial
immune algorithm (AIA) is equivalent to the
objective function. The calculation of the affinity
between antibodies is embedded within the
algorithm to determine the promotion/suppression
of antibody production.

Three commonly applied types of AIAs are
immune network algorithm (INA), negative
selection algorithm (NSA), and clonal selection
algorithm (CSA). The main operators of the
CSA are cloning selection and affinity
maturation. The affinity and clonal selection
maturation principles are used to explain how
the immune system reacts to pathogens, and
how it improves its capability of recognizing
and eliminating. When an antigen is detected,
those antibodies that best recognize this antigen
will proliferate by cloning. This process is
called a clonal selection principle. Affinity
maturation is the whole mutation processes and
selection of the variant offspring that better
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recognizes the antigen (de Castro and Timmis,
2003). Two basic mechanisms of affinity
maturation are hypermutation and receptor
editing (de Castro and Von Zuben, 2002c).
Hypermutation is in a similar way with mutation
in genetic algorithms. It ensures large mutations
for low-affinity cells in order to obtain cells
with a higher affinity. Its procedure is handled
by receptor editing. The natural TA is a very
complex system with several mechanisms to
defend against pathogenic organisms. However,
the natural immune system is also a source of
inspiration for solving optimization problems.

3-2. Antibody representation and initialization
In this section, we use string of discrete number

representation as applied in the proposed genetic
algorithm. For the problem with n customer
jobs, the representation is a permutation of n
digits in length, in which all digits are between 1
and n.

3-3. Fitness evaluation
The higher fitness value (FV) means the better
antibody. So, we define the following function to
evaluate the fitness of each antibody by:
1
Objective value(p)

Thus, the lower the objective function is, the
higher the affinity value becomes.

3-4. The best selection
In this section, the best known antibody based on
affinity is found.

Fitness value (p) =

3-5. Similarity evaluation
The similarity between each antibody with the
best known antibody obtained so far is evaluated.
All the remaining antibodies will be compared
with the best antibody one by one to count the
number of different chromosome positions. This
evaluation is based on the similarity rate (Sr)
computed by: gp = £

n
where k is the number of digits that are the same
as those in the best antibody, and # is the length
of a string number.

3-6. Affinity value (AV) calculation

The affinity evaluation of antibodies is an
important index for the AIA during optimization
process. Since a good candidate antibody may be
able to multiply and dominate the mating pool
prematurely and may restrict the search space to
candidate antibodies, we use the following
method to prevent good candidate antibody from

becoming overly dominant. To assist the search,
the proposed AIA wuses fitness value (FV),
similarity rate (SR), and adjustment rate (4R) to
compute the affinity value by:

Affinity value (p) = (1-SR x AR)x (FV (p))
where AR is a parameter that has influence on the
impact of SR on the affinity value. The higher AR
gets, the lower coefficient (i.e., 1-SRXAR)
becomes. To maintain diversity, each antibody
that has higher SR is assigned a lower coefficient
(i.e., 1-SRxAR) multiplied by FV in order to
decrease FV more than other antibody’s
reduction.

3-7. Mating pool expansion

popsize-1 antibodies from the full population,
including the best antibody, are selected with
replacement and according to their fitness. Those
antibodies, which have higher fitness value, are
selected more often.

3-8. Crossover

We select popsize xpc pairs of parents from the
mating pool and perform crossover on the parents
at random. We use some crossover operators
applied to the proposed GA.

3-9. Hyper mutation

We select the remaining antibodies from mating
pool and mutate the individual bits. Engin and
Doyen (2004) used a two-phase mutation
procedure. At first, the selected clones suffer a
mutation operator. If the objective value of the
mutated clone is better than that of the original
clone, then the mutated one is stored in the place
of the original one. Otherwise, the clone will be
mutated again with another mutation operator.
Due to having four mutation operators, as
described in the proposed GA, there are 12 (i.e.,
4x3) permutations.

3-10. Receptor editing

The worst a% of the whole population in the
antibody population is eliminated and replaced
with randomly created antibodies. The overall
procedure is shown in Figure 4.
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| Set parameters |

v

| Generate initial population

4>| Fitness evaluation |

v

—| The best one selection |
v

Similarity evaluation |
Transfer *

| Affinity value calculation |

v

Mating pool expansion

A 4

pc% 1 -pc%

| Crossover | |Hypermutati0n|

Receptor editing

Stopping criterion met?(CT)

Fig. 4. Overall proposed procedure

4. Experiments and Results
As mentioned earlier, genetic algorithm (GA) is
the most common metaheuristic employed to
solve the batch machines problem in literature.
Therefore, we employed GA as a benchmark for
investigating AIA suggested in the current
research. GAs attempt to mimic the biological
evolution process for discovering good solutions.
They are based on a direct analogy to the
Darwinian natural selection and mutations in
biological reproduction and belong to a category
of heuristics known as randomized heuristics that
employ randomized choice operators in their
search. Nowadays, GA is considered to be one of
the typical meta-heuristic approaches for tackling
both discrete and continuous optimization
problems. Theoretical analyses suggest that GAs
can quickly locate high performance regions in
extremely large and complex search spaces. GAs
work by generating chromosomes (e.g., numeric
vectors), representing a possible solution to a
problem. The individual components (e.g.,
numeric values) within a chromosome are called
genes. Chromosomes are then evaluated

according to a fitness (or objective) function. A
fitness value is assigned to each chromosome
according to its performance. The more desirable
the chromosome is, the larger the fitness value
becomes. A typical iteration of a GA, called
generation, proceeds as follows. The best
chromosomes of the current population are
copied directly to the next generation (i.e.,
reproduction). A selection mechanism chooses
chromosomes of the current population in such a
way that the chromosome with the higher fitness
value has a greater probability of being selected.
The selected chromosomes mate and generate
new offspring by “crossover” (i.e., the
probabilistic exchange of values between
vectors). After the mating process, each offspring
might mutate by another mechanism, called
“mutation” (i.e., the random replacement of
values in a vector). Mutation provides
randomness within the chromosomes to increase
coverage of the search space and help prevent
premature convergence on a local optimum. The
GA's search process typically continues until a
pre-specified fitness value is reached; a set
amount of computing time passes or until no
significant improvement occurs in the population
for a given number of iterations. The key to
finding a good solution using a GA lies in
developing a good chromosome representation of
solutions to the problem.

Most of the evolutionary algorithms use a
random procedure to generate an initial set of
solutions. The initialization of a chromosome
presented in a string of discrete number is
performed from randomly generated n digits in
range [1, n].

Since the objective is the minimization of the
total cost, better solutions are those results in a
lower objective function. The higher fitness value
means the better chromosome. So, we define the
following function to calculate each fitness value:

1

Objective Function

Fitness Value =

Using the roulette-wheel selection mechanism,
the higher fitness value a solution has, the more
chance it has to be selected.

4-1. Genetic operators

4-1-1. Reproduction

With more probability, better parents can
generate better offspring. So, it is necessary to
transfer the best solutions of each generation to
the next. Therefore, chromosomes with higher
fitness values are more desirable, so p,% of the
chromosomes with the greater fitness values is
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automatically copied to the next generation, in
which this is called the elite strategy.

4-1-2. Crossover

Crossover operates on two chromosomes at a
time and generates offspring by combining both
chromosomes features. The main purpose of this
operator is to generate ‘better’ offspring, i.e., to
create better sequences after combining the
parents. As we assign p, of the chromosomes in a
generation to reproduction, 1-p, remaining
chromosomes are generated through the
Crossover operator.

One-point crossover:

Input: Two chromosomes as parents

Output: Two feasible chromosomes as offspring
Step 1: One point is randomly selected to divide
both selected parents into two separate parts. If n
is the number of genes in a chromosome, there
are n—1 crossover points. One of these points is
selected with the equal probability. The digits on
the first side of Parents I and II are inherited by
the Offsprings I and II, respectively.

Step 2: Transfer digits from the second side of
Parent I to the second side of Offspring II in a left
to right order. Similarly, transfer digits from the
second side of Parent II to the second side of
Offspring 1.

Step 3: Transfer those digits from the second side
of Parent I, which cannot be copied to the second
side of Offspring II, to remaining empty positions
of the second side of Offspring I. Do similarly for
remaining empty positions of Offspring II.
Two-point crossover:

Input: Two chromosomes as parents

Output: Two feasible chromosomes as offspring
Step 1: Two points are randomly selected to
divide both selected parents into three separate
parts. The digits on the middle side of Parents |
and II are inherited by the middle side of
Offsprings I and II, respectively.

Step 2: Transfer digits from the first and third
sides of Parent I to the first and third sides of
Offspring II in a left to right order. Similarly,
transfer digits from the first and third sides of
Parent II to the first and third sides of Offspring I.
Step 3: Transfer those digits from the first and
third sides of Parent I, which cannot be copied to
the first and third sides of Offspring II, to the
remaining empty positions of the first and third
sides of Offspring I. Do similarly for the
remaining empty positions of Offspring II.
Position-based crossover:

Input: Two chromosomes as parents

Output: Two feasible chromosomes as offspring

Step 1: A set of the same positions from each
parent is selected randomly. Each position is
independently marked with the probability of 0.5.
Transfer the digits in these positions from Parents
I and II into the corresponding positions in
Offsprings I and II, respectively.

Step 2: Transfer the unmarked digits from Parent
I to the corresponding positions of Offspring II in
the left to the right order. The same procedure is
applied to produce the first offspring by Parent II.
Step 3: Transfer those unmarked digits from
Parent I, which cannot be copied to Offspring II,
to the remaining empty positions of Offspring I.
Do similarly for the remaining empty positions of
Offspring II.

4-1-3. Mutation

The mutation operator is used to rearrange the
structure of a chromosome and to slightly change
the sequence, i.e., generating a new but similar
sequence. This operator can also be considered as
a simple form of a local search. The probability of
mutating an offspring is called the probability of
mutation, p,, which is usually a small number.
After generating an offspring by a crossover
operator, a random number from uniform [0,1] is
dedicated to the offspring. If this random number
is less than or equal to p,, then the mutation
operator will be performed on that offspring. We
present four mutation operators, namely swap
mutation, big swap mutation, inversion mutation,
and displacement mutation. In the swap mutation
operator, two adjacent genes are swapped. In a big
swap mutation, two genes are selected and
swapped. In the inversion mutation, two positions
are selected, and the sub-string is inverted between
two positions. In the displacement mutation, a sub-
string is selected and inserted in a position.

4-2. Data, factors and levels

Data required for testing effectiveness of our
algorithms for the parallel BMs with maintenance
problems includes two parts, data related to the
production scheduling and data related to the PM.
The first part of the required data consists of data
related to the production scheduling. Test problem
instances of this part are randomly generated in a
manner similar to Husseinzadeh Kashan et al.
(2008). For covering various types of problems,
four factors are identified: number of jobs (),
number of BMs (m), variation in job processing
times (p;), and variation in job sizes (s;). In general,
six categories of problems are generated by
combining three levels of job sizes (small, large,
and combination of small and large (mixed)) and
two levels of processing times. Processing times
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and job sizes are generated from discrete uniform
distribution. The factors, their levels and ranges,
are shown in Table 1. Also, we consider the
machine capacity to be 10 in all instances.

Tab. 1. Factors and levels

Factors levels
m 2,4
n 10, 20, 50, 100, 200

Di Uniform [1,10] and Uniform [1,20]
S Uniform [1,10], Uniform [2,4],
/ Uniform [4,8]

The second part of data consists of shape
parameter (/3), scale parameter (6), the duration of
the PM operations (Dpy), the number of time
units the repair takes (z,), and the number of time
units of the PM (¢,). These data are divided into
two subparts, each of which considers one PM
policy. For each configuration of » and m, f = {2,
3, 4} is defined. We assume that the duration of
PM operations is uniformly distributed in a wide
range of values. Because we want to consider
some short maintenance actions, like cleaning,
tightening of bolts or lubrication, and also some
longer maintenance actions such as replacements
of parts or thorough inspections, Dpy, is defined
as U[1,5], U[1,10], and U[1,15] for processing
time generated from the discrete uniform [1,10]
and Ul1,10], U[1,20], and U[1,30] for
processing time generated from the discrete
uniform [1,20]. That is, there are three cases for
each processing time where the average Dpy, is
50%, 100%, or 150% of the processing times. In
the case of policy II, ¢, is set at 1 and ¢, at § for all
the experiments. For setting 6, the levels of 0 are
chosen so as to make sure that a significant
number of PM operations would be carried out in
each machine. It is known that a small value for 6
would result in very little or even no PM
operations, while a very large value would
possibly impede performing certain processing of

jobs on machines without interruptions due to the
small amount of time between PM operations.
Also, it is necessary to deal with that if the time
between two consecutive PM operations is lower
than the maximum processing time, some jobs
could be never processed. On the other hand, if
this time becomes very large, it is very likely no
PM operations are required. Consequently, the
levels of @ are chosen so to make sure that a
significant number of PM operations would be
carried out in each machine, and generating 7pu,,
must be done with the great care. Doing so, we
need to define two new artificial variables “B”
and “X” to estimate the workload on the batch
processing machines as follows:

— Z;’l=1sj . X B

0.8xS m’
so that “B” is the expected number of batches on

station consisting of parallel BM and “X” is the
expected number of batches on each machine.
Values of 6 are set according to the variable “X”
and number of jobs. Finally, for each
configuration of n, m, p;, s;, B, 6, and Dpy, there
are 10 different problems, which result in a total
set of experiments of 5400 instances which each
experiment runs six times. In Policy III, four
parameters exist: 6, S, Ry(f), and ¢. The same
configurations of f, 6, and Dpy, as in the case of
policy II are considered; therefore, a set of 5400
instances is also obtained. On the other hand, the
aim of policy III is to keep a minimum level of
reliability for a production period ¢ which Tpy is
calculated by Eq. (2). Here, the aim is a 95%
reliability after the production period ¢, thus
Ro(#)=0.95. Thereupon, it is necessary to
determine period ¢ to be calculated 7py by Eq.
(2). Parameter ¢ can be easily obtained from the
job processing times of the instances. Processing
times are generated from uniform distributions
between [1,10] and [1,20], and then, ¢ = X*5 and
t = Xx10, respectively. After calculating B and
then X, we show values of ¢ in Tables 2 and 3.

Tab. 2. Values of #for m=2

t

problems n=10 n=20 n=50 n=100 n=_200
s; € [24],p; € [1,10] 15 24 37 155 160
s; € [4,8],p; € [1,10] 16 36 84 167 341
s; € [1,10], p] [1,10] 12 27 77 148 324
s; € [24],p; € [1,20] 25 30 75 321 373
s; € [48], pj [1,20] 33 73 169 335 683
s; € [1,10],p; € [1,20] 25 55 155 296 648
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Tab. 3. Values of #for m=4

t

problems
n=10 n=20 n=50 n=100 n=200
s; € [2,4],p; € [1,10] 13 15 28 80 93
s; € [4,8],p; € [1,10] 13 16 42 97 170
s; € [1,10],p; € [1,10] 15 27 38 74 162
sj € [2,4],p; € [1,20] 13 17 37 160 186
s; € [4,8],p; € [1,20] 16 36 84 167 341
s; € [1,10],p; € [1,20] 13 27 79 143 324

Each category of problems is represented with a
run code. For example, a problem category with
10 jobs, four BMs, processing times generated
from the discrete uniform [1,20], job sizes
generated from the discrete uniform [4,8], and
p=3 is shown by J1m2p2s353. To be fair,
searching time is set to a specific number for both
algorithms, which is equal to 0.5%xnxm
milliseconds. This criterion is sensitive to both
problem sizes (i.e., n and m). By using this
stopping criterion, searching time increases
according to the increase of either a number of
DCs or customers. Algorithms are coded in C#
(visual studio 2008) and run on a Pentium IV PC
with 2.6 GHz and 1GB of RAM memory. With
these data, the Taguchi experiments are carried
out for results
individually transformed to S/N Ratio, then these

ratios of trials are averaged at each level.

each algorithm. The are

5. Performance Assessment

In this section, we compare the results of
algorithms. Because the scale of objective
functions in each instance is not the same, the
relative deviation percentage or response variable
(RPD) is used as a common performance
measure to compare the algorithms. After
transforming the results of experiment to RPD
measure, as illustrated in Tables 4 and 5, they are
averaged for each combination of » and m (48
data points per average). This table shows the
high performance of AIA (RPD=0.0155%) with
respect to the GA. Figures 11 and 12 demonstrate
interaction between the quality of the algorithms
and the size of problems. It is worth noting that
AIA exhibits the robust performance, meanwhile
the problems of size increases. It also shows
remarkable improvement in performance of AIA
in large-sized problems versus GA.

Tab. 4. Average RPD for the algorithms
grouped by nand m=2

Algorithms
n/m=2 GA AlA
10 0.0286 0.0232
20 0.0279 0.0223
50 0.0352 0.017
100 0.0163 0.0088
200 0.0266 0.0064
Average 0.02692 0.01554

Tab. 5. Average RPD for the algorithms
grouped by nand m=4

Algorithms

n / m=4 GA AlA
10 0.032 0.0212

20 0.0279 0.0213

50 0.033 0.016

100 0.0163 0.015
200 0.0166 0.0054
Average 0.02516 0.01578

6. Conclusion

In advanced manufacturing systems, the main
purpose of preventive maintenance is to ensure
that all machines required for production are
operating at high level of operating conditions at
all times. Therefore, manufacturers should
consider having an established maintenance
schedule in place in order to reap the full benefits
of a preventive maintenance strategy. In this
paper, both fixed and flexible (Non fixed)
operations are considered to achieve a plan for
scheduled preventive maintenance at a
manufacturing system with parallel machines.
The fixed PM is considered where PM operations
are planned in advance and the starting times of
the maintenance operations are fixed beforehand.
In this type of PM, the fixed time periods are
predefined without considering probabilistic
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models and PM operations are carried out exactly
in these time periods. On the other hand, the
schedule of PM periods is determined jointly
with the schedule of jobs in Non-fixed PM, and
the starting times of the PM activities are allowed
to be flexible. In this type, the time of the PM
activities is not determined precisely, but the
times needed to perform PM activities times are
computed based on the failure times of a
machine. Two solution methodologies, GA and
AIA, are devised to reach the appropriate
scheduled maintenance plan due to time
complexity of the problem. The best performance
of methods is investigated according to their
parameters and  operations.  Then, the
performance of solution methodologies is
evaluated via computational experiments.
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